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 Big Bend National Park, Texas



management	  	  
decision	  

resource	  
state	  

environmental	  
condi1ons	  

management	  	  
decision	  

resource	  
state	  

environmental	  
condi1ons	  

management	  	  
decision	  

resource	  
state	  

environmental	  
condi1ons	  

… …

1me	  
t+1	  t	  t-‐1	  

par1al	  
control	  

par1al	  
observability	  

structural	  
uncertainty	  

environmental	  
varia1on	  

Figure 4.1. Uncertainty factors in natural resource management. Partial control limits the influence of management actions. 
Environmental variation affects resource system status and dynamics. Partial observability limits the recognition of system status. 
Structural uncertainty limits the ability to characterize system change.  

In this chapter we discuss some important technical 
issues that arise in the implementation of adaptive 
management, in particular the treatment of uncertainty 
in resource management and the influence of long-term 
(and uncertain) environmental trends. We also address 
attributes of models and management alternatives that 
promote learning.  

4.1. Components of uncertainty

Here we revisit the components of uncertainty that 
can affect natural resources in the context of thematic 
areas explored in this guide. We focus on the uncertainty 
factors highlighted in Chapter 2, including environmental 
variation, partial controllability, partial observability, 
and structural uncertainty. These uncertainties influence 
natural resources management in different ways and at 
different points in a resource system (Figure 4.1). Taken 
separately or in combination, they can limit understanding 
of resource functions and restrict our ability to identify 
useful management strategies. The difficulties they 
introduce vary with the particular ecological situation, but 
as a rule their potential impacts increase with the scale 
and complexity of the resource system. 

 
Chapter 4:  Uncertainty and Learning

 Environmental variation. Environmental condi-
tions can be viewed as external factors that influence, 
but are not influenced by, resource conditions and 
dynamics. Here we consider environmental conditions 
in terms of the physical environment, as expressed in 
precipitation patterns, temperature regimes, ambient light 
conditions and other measures, as well as extremes in 
these conditions. Environmental conditions directly and 
indirectly influence the ecological and physical processes 
that determine resource dynamics. Because they vary 
randomly over time, future conditions cannot be predicted 
with certainty. 

Environmental fluctuations may be thought of 
as lacking a discernable pattern of change in central 
tendency or range of variation. Alternatively, they may 
be seen in terms of directional trends, such as a long-term 
decrease in average precipitation or an increase in the 
range of ambient temperatures. The latter framework is 
especially relevant to climate change, which is character-
ized in terms of directional environmental change over an 
extended period. 
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Fluctuations in the environment can interact with 
land-use and land-cover changes that occur during the 
same time that the climate is changing. Urbanization, 
deforestation, industrial agriculture, manufacturing, 
mining, transportation, and other activities have increased 
worldwide, with potentially profound impacts on resource 
systems. Because climate change and human development 
have occurred simultaneously, their impacts are difficult 
to separate. However, there is little doubt that in combina-
tion they are altering natural resource systems and causing 
long-term changes in resource dynamics. 

It often is useful to include unrecognized landscape 
heterogeneity and unpredictable human impacts on the 
landscape as a part of “environmental variation.” In 
combination these factors can greatly influence resource 
responses to management, depending on the scale and 
unpredictability of the change. For example, manage-
ment strategies needed for irregular, large-amplitude 
environmental fluctuations may differ from those needed 
for more predictable fluctuations of smaller amplitude. 
Though environmental variation is assumed to be uncon-
trolled, it can be tracked through monitoring and incorpo-
rated into forward-looking management strategies.

Partial controllability. Partial controllability refers 
to the difference between the results intended by a 
given management decision and the results that actually 
occur. Stated formally, it describes a random association 
between intended and realized management actions. 
Unintended outcomes are often a result of management 
decisions implemented by indirect means. For example, 
hunting permits may be used as an indirect means to 
attain a chosen rate of waterfowl harvest, as in our 
example of adaptive harvest management (Section 4.4); or 
forestry regulations may be used to limit logging-related 

impacts on wildlife. The net effect is that the intended 
outcome of a management decision is only partially 
accomplished by the action taken. One way to account for 
this is to characterize an anticipated action probabilisti-
cally, with a distribution that assigns probabilities of 
occurrence over a range of potential outcomes.

A somewhat different version of partial controllability 
can arise if there is a delay between identifying an action 
and implementing it. In this case partial controllability 
is induced not by an imprecise or indirect linkage to a 
control mechanism, but rather by unforeseen circum-
stances that restrict or prevent the implementation of the 
action. One example is an unanticipated loss of funds 
for a management intervention. In such a case there is a 
point between the identification and implementation of 
an action when the manager recognizes that the chosen 
action cannot be carried out. 

In actual operations, partial controllability differs 
from environmental variation in terms of the nature and 
timing of its effect. Thus, partial controllability occurs at 
specific points in the resource system where management 
alters resource conditions and states, with decisions and 
actions linked at each point in time (Figure 4.1). On the 
other hand, environmental variation is expressed through 
fluctuations and trends in environmental conditions over 
time. Fluctuating environmental conditions influence 
ecological processes in ways that are uncontrolled, 
uncertain, and often unrecognized. 

Notwithstanding these differences, environmental 
variation and partial controllability are sometimes 
combined in models of resource dynamics, mainly 
because of similarities in the way they are characterized. 
Like environmental variation, partial controllability 
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carbon dioxide from rising above a certain level, but the 
net effects of these emissions controls may differ from 
the outcome that is intended. Climate change adaptation 
also may involve indirect control mechanisms, such as 
land transfers, outreach and communication efforts, and 
regulatory mechanisms. Similarly, partial controllability 
is likely to be an important uncertainty factor in water 
management, energy development, and large-scale human 
activities on the landscape, each of which involves many 
of the same kinds of management controls that can 
be used for climate change. The importance of partial 
controllability varies with scale, and it tends to be less 
important in localized, smaller-scale projects for which 
random variation is limited and control can be exercised 
more directly.  

Partial observability. Partial observability expresses 
our inability to observe completely the resource system 
that is being managed. Natural resources are almost 
always partially observed. For example, only a part of 
the area where a fish population occurs can be monitored, 
and a sampling strategy needs to allow inferences over 
the whole area on the basis of the observation of only a 
part of it. Observability is further complicated by the fact 
that individuals (e.g., plants and animals) often escape 
detection, even in areas that are intensively monitored. 
In combination, incomplete geographic coverage and 
incomplete detectability mean that observations collected 
in the field are associated with – but not the same as – 
actual system states. 

Partial observability obscures the resource status 
on which effective management depends. This reduces 
management effectiveness, even if environmental varia-
tion is minimal and management actions are precisely 
controlled. For example, decision makers without accu-

increases with geographic scale and ecological complex-
ity: the larger and more complex the resource system, the 
less certain we can be that management decisions will 
have the intended outcome. For example, regulations for 
hunting ungulates may not result in the intended harvest 
rates if the animals occur in wide-ranging groups (perhaps 
based on age or sex) with different likelihoods of being 
seen by hunters.  

Partial controllability is likely to cause significant 
uncertainty in managing projects in the thematic areas 
emphasized in this guide. For example, indirect mecha-
nisms like tax incentives, permit systems, and carbon 
trading arrangements may be used to prevent atmospheric 



rate information can fail to recognize the need to protect 
a resource, or overlook opportunities for sustainable 
resource exploitation (Moore and Kendall 2004). These 
problems become more pronounced under highly variable 
environmental conditions.

Partial observability is commonly measured by 
sampling variation, which occurs when field data are 
collected and analyzed. Unlike environmental variation, 
over which we have little if any control, the accuracy with 
which resources are observed can be controlled by design-
ing field sampling efforts efficiently. For example, we 
can reduce uncertainty about resource status with more 
intensive sampling, optimal geographic design of the 
sampling effort, and the use of standard survey principles 
like randomization, replication, and controls. Nonetheless, 
partial observability can rarely be eliminated, no matter 
what the design and sampling intensity.  

There are several ways of dealing with partial observ-
ability in decision making. One is to estimate resource 
status with field data, and then treat the estimate as if it 
accurately represents resource conditions. Another is to 
state the uncertainty about resource status explicitly, with 
probabilities for possible resource states, and incorporate 
these probabilities directly into the decision-making 
process (Williams 2009). The first approach is far more 
common in natural resource management. Of course, 
the most direct way to address partial observability is to 
reduce it as much as is practicable with well-designed 
monitoring.

Like the other forms of uncertainty, partial observ-
ability increases with geographic scale and ecological 
complexity. For example, wildlife population abundance 
is more difficult to estimate if populations consist of 
widely dispersed age or size groups that are not equally 
detectable. As a general rule, the larger and more complex 

the resource system, the less certain we can be that the 
resource estimates on which management is based track 
the actual system state. 
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Structural uncertainty. Structural uncertainty is a 
result of a lack of understanding (or lack of agreement) 
about the processes that control resource dynamics. In 
virtually all cases there is some degree of uncertainty 
about the forms and functions – i.e., the structure – of 
natural processes. Structural uncertainty can limit our 
ability to manage resources effectively and efficiently, 
even if monitoring is exact, management actions are 
rigorously controlled, and environmental variation is 
minimal. 

The differing views held by stakeholders about 
how natural processes work and how they respond to 
management are examples of structural uncertainty. 
These views can be framed as hypotheses about system 
processes and responses and then embedded in models, 
which in turn can be used to make testable predictions. 
Examples of uncertainty about resource form and 
function include hypothesized associations between 
different attributes of the resource, or relationships 
between controls and resource elements, or connections 
between environmental conditions and resource states, or 
parameterizations of these relationships. The hypothesized 
forms and parameterizations can be incorporated in 
different models, and structural uncertainty then is 
expressed in terms of uncertainty about which model 
(and its embedded hypothesis) best represents resource 
dynamics. 

In adaptive decision making, structural uncer-
tainty changes over time because it is based on evolving 
resource conditions and management actions. These 
changes are quantified with measures of confidence in 
the ability of the models to predict resource dynamics. A 
common mathematical approach is Bayesian updating, 
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which combines confidence values and monitoring data at 
each point in time to generate new confidence values for 
the next point in time (Lee 1989). Confidence increases in 
models that make accurate forecasts of resource condi-
tions, and confidence declines in models that do not make 
accurate forecasts. Of course, changes in confidence differ 
from a change in the hypotheses themselves, which occurs 
through the process of double-loop learning  
(see Section 2.7).

Structural uncertainty, like the other forms of uncer-
tainty, has a tendency to obscure the effects of manage-
ment and reduce effectiveness. However, it differs from 
environmental variation and partial controllability in its 
point of influence (Figure 4.1) and the manner in which 
it is treated. Structural uncertainty can be reduced by 
applying management strategies to affect the measures of 
confidence in models. In contrast, environmental variation 
(and in some cases partial controllability) are effectively 
uncontrolled. 

4.2. Systemic resource  
       changes over time

Adaptive management is usually framed in terms 
of an (often unstated) assumption that the features 
and processes of a resource system are stable over the 
management time frame, so that uncontrolled fluctuations 
change little in overall direction or range of variation. 
A generic model for adaptive management assumes that 
at any given time, resource change is influenced by the 
state of the resource, environmental conditions, and 
the management action taken at that time (Figure 2.1). 
Randomness in environmental conditions induces random 
resource changes, and directionality in these conditions 
over time means that uncontrolled resource dynamics 
also tend to exhibit directionality over time. Conversely, 
random and non-directional environmental fluctuations 
tend to preserve dynamic stationarity in resource behav-
iors. Approaches to system analysis and control, includ-
ing the framework typically used in adaptive decision 
making, have traditionally rested on the assumption that 
system features and patterns of fluctuation are stable over 
time. 

It is becoming increasingly clear that for a great 
many resource systems, the ecological structures and 
processes controlling resource dynamics are changing in 
ways not fully expressed by the management framework 
depicted in Figure 2.1. Of particular importance is that 
environmental conditions, and the ecological processes 
influenced by them, are exhibiting directional patterns of 
change. An obvious example is climate change, in which 

the environment is seen as evolving directionally in terms 
of temperature, precipitation, and other variables. 

An important challenge for an adaptive approach 
is to include directional trends in the environment. 
Such an extended framework is especially relevant to 
climate change, as expressed in terms of directional 
environmental change like a long-term decrease in 
average precipitation or an increase in the range of 
ambient temperatures. Of course, directional change can 
be important over shorter periods as well; many anthro-
pogenic forces exhibit large-scale directional change on 
shorter time scales than climate change. In either case, 
directional change has the potential to induce directional-
ity in resource behaviors, i.e., to generate non-stationary 
resource dynamics. 

Non-stationary dynamics become especially challeng-
ing for a forward-looking, learning-based approach like 
adaptive management. Learning about resource processes 
and management impacts proceeds through an iterative 
process of decision making, follow-up monitoring, and 
assessment of impacts. The cycle of learning becomes 
more difficult when the subjects of investigation – the 
ecological processes that determine resource change – are 
themselves evolving. 

One way to address this problem is to track and 
even model the environmental drivers of change, and 
to use trends in environmental conditions to account 
for changes in patterns of resource change over time. 



Another way is to look for limited periods during which 
resource processes are largely stable so that learning-
based management can be effective. A third approach is to 
develop environmental scenarios with different patterns of 
directional change, and try to design acceptable manage-
ment strategies that account for uncertainties among the 
scenarios. Adaptive decision making then can be used to 
address uncertainty about which scenario is appropriate 
(and therefore which strategy should be chosen). 

Non-stationarity is a newly recognized and serious 
challenge to adaptive decision making, one for which we 
need new approaches that go beyond the standard ways of 
framing and conducting learning-based management. At 
a minimum it is necessary to look for directional trends 
in environmental conditions and systematic changes in 
resource structures and functions, and consider ways to 
accommodate them.

Finally, it is worth re-emphasizing that systemic 
change in resource dynamics can also be caused by 
large-scale, effectively permanent human interventions 
on the landscape. At a certain scale the human footprint 
on the landscape can be thought of as part of the external 
environment, and long-term growth of that footprint can 
easily cause changes in physical and ecological processes. 
Because it is the result of human actions, the footprint 
presumably is partially controllable. However, long-term 
changes, driven in large part by the growth of human 
populations, economic growth, technological change, and 
demands for natural resources and space, are unlikely to 
stabilize in the foreseeable future. Like the directional 
change in environmental conditions caused by climate 
change, long-term patterns of increasing resource use 
and disturbance, and the directional trends they cause in 
resource dynamics, will need to be taken into account in 
adaptive decision making. 
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Models play a key role in adaptive management by 
incorporating different hypotheses about how a resource 
system works and how it responds to management. 
Agreements, disagreements, and uncertainties about 
resource behaviors can be highlighted with models and 
used to guide investigations through basic research and 
learning-oriented management interventions.
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4.3. Models, management  
       alternatives, and learning

In an adaptive management application, both models 
and management alternatives are identified and agreed 
upon by managers and other stakeholders. The models, 
which embed different hypotheses about how the resource 
system works, represent uncertainty (or disagreement) 
about ecological processes and the influence of manage-
ment on them. The management alternatives express 
a range of potential actions that can be taken at each 
decision point. 

Models play a key role in adaptive management by 
incorporating different hypotheses about how a resource 
system works and how it responds to management. 
Agreements, disagreements, and uncertainties about 
resource behaviors can be highlighted with models and 
used to guide investigations through basic research and 
learning-oriented management interventions.  

The management alternatives also play a key role. 
The identification of informative and effective strate-
gies depends upon differences in predicted responses to 
management actions. For optimal management, distinctly 
different predictions should be produced for the alterna-
tive actions, so as to facilitate the identification of an 
optimal action. To promote learning, distinctly different 
predictions should be produced by the alternative models. 
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These conditions suggest two ways that adaptive 
decision making can be compromised. One way is that the 
models representing uncertainty about system structure 
produce similar predictions for the alternative actions. 
Under these circumstances there is little practical value in 
resolving uncertainty about how the system works, since 
the models describing system performance all perform 
equally well. The other way adaptive decision making 
can be compromised is that the available actions produce 
essentially indistinguishable results for each model. In this 
situation there is little value in attempting to discriminate 
among management alternatives because they all produce 
similar results. The latter situation often occurs when the 
potential management alternatives differ only marginally.

This implies that the models and management alterna-
tives should be considered in combination. For a given set 
of actions, the various models under consideration should 
predict distinctly different outcomes, so that learning 
through management becomes possible. Similarly, the vari-
ous alternatives should produce distinctly different predic-
tions, so that the best action can be clearly seen. Adaptive 
decision making works best when (i) there is substantial 
variation in the hypothesized forms and functions for the 
resource system, and (ii) management alternatives differ 
substantively in their predicted resource responses. 

A special case of adaptive decision making treats 
the management alternatives themselves as hypotheses 
(Williams 2011a). Each alternative is seen as a hypothesis 
about the effectiveness of the action, much as hypotheses 
in experiments are expressed in terms of responses to 
experimental treatments (Graybill 1976). The emphasis 
here is restricted to system responses to management, 
rather than improved understanding of the ecological 
processes behind those responses.

As an example, consider the alternatives of clear 
cutting, thinning, and selective cutting as hypotheses 
about the best way to manage a forest stand. A choice of 
one of the alternatives sets up an “experiment,” which 
provides evidence that either does or does not support 
the intervention as an effective management action. If 
the forest’s response contributes to meeting the manage-
ment objectives, the intervention is a viable candidate 
for continued use. A response differing from what was 
expected or desired suggests that the intervention should 
be rejected in favor of another. The problem, of course, 
is that there is always uncertainty about system responses 
to management interventions, and predictions about the 
responses must somehow account for those uncertainties. 
Without a mechanism for learning based on the compari-
son of alternative predictions against observed evidence, 
this “experimental” approach can easily become a form of 
trial and error management.  

There are at least two ways to strengthen the infer-
ences of such “experimentation.” A traditional way is 
to use randomization, replication, and controls, when 
possible, in the spirit of experimental design. Thus, 
we might use simultaneous interventions on different 
management units in different places. This makes it 
possible to compare the effect of one intervention on 
a group of management units against a different inter-
vention on other units. Our example of post-wildfire 
management after the Biscuit Fire in Oregon describes 
such a management study by the Forest Service. Standard 
statistical treatments can be used for the comparison, with 
results that can contribute to improved management. 

If the interventions are carried out sequentially, one 
can compare monitoring data against predictions for each 
alternative to update confidence in the alternatives over 

Figure 4.2. Conceptual model of annual cycle of mallard population dynamics. Model includes survival rates for spring-summer 
(Ss) and fall-winter (Sw), along with harvest rates for young (hy) and adults (ha) and age ratio (A) for reproduction/recruitment. 
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time. In this case, one must describe a predicted response 
to a given intervention under each of the alternative 
models. For example, hypotheses (models) can be formu-
lated based on the relative responses to clear cutting, 
selective cutting, and thinning. One common method is to 
identify confidence values for the intervention models and 
update these values at each decision point by comparing 
predicted responses with post-decision monitoring data 
(Williams et al. 2002). In this way the confidence values 
can evolve over time, increasing for alternatives that are 
supported by the data and decreasing for alternatives that 
are not. A change in the confidence values then becomes 
a measure of learning over time, leading gradually to 
recognition of the best intervention.

Learning through experimentation typically involves 
the use of classical hypothesis testing, in which interven-
tions are considered experimental “treatments” and 
analysis-of-variance methods are used to recognize statisti-
cally significant treatment effects. When interventions are 
implemented sequentially, a popular alternative for learning 
is to update the credibility of different hypotheses over time 
on the basis of post-decision monitoring data.

4.4. Example: Uncertainty and  
       learning in waterfowl management 

An example that highlights many of the points 
in this chapter is the framework for adaptive harvest 
management of waterfowl. Adaptive harvest manage-
ment was begun in 1995 as a process for setting annual 
regulations for the sport hunting of waterfowl in North 
America (Williams and Johnson 1995, Williams et al. 
2002). It uses a simple model to represent associations 
among fall harvest, seasonal survivorship, and spring 
reproduction (Figure 4.2). Contrasting hypotheses about 
the impact of harvest on annual survivorship are easily 
incorporated into different versions of the model by 
describing different functional relations between harvest 
rates and post-harvest survival. In addition, contrasting 
hypotheses about the importance of density dependence 
in recruitment are incorporated by describing recruitment 
in terms of spring population size. In combination, these 
hypotheses define different models, each with its own 
predictions about harvest impacts and each with its own 
measure of confidence that evolves over time. The models 
and their measures of confidence characterize structural 
uncertainty, which is reduced as harvest actions are taken 
and post-harvest monitoring data are used to update the 
confidence measures. Learning is expressed through the 
updating of these measures and is folded into the annual 
process of setting hunting regulations.  

Adaptive decision making works best when (i) there 
is substantial variation in the hypothesized forms and 
functions for the resource system, and (ii) management 
alternatives differ substantively in their predicted  
resource responses.
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The forms of uncertainty we have described in this chapter enter naturally into 
this problem. For example, harvest rates that are targeted through the use of regu-
lations result in partial controllability. Environmental variation affects recruitment 
through water conditions on the breeding grounds, as measured by the abundance 
of ponds. The change in pond numbers each year is based on the number in the 
current year and the amount of precipitation the next winter and following spring. 
Precipitation amounts are assumed to be random and independent from year to 
year, with no long-term trend in the average amount or severity of precipitation 
events. Finally, one of the most comprehensive monitoring programs for wildlife 
in the world (Martin et al. 1979, Smith et al. 1982) is used to estimate the status 
of waterfowl populations and the parameters that control waterfowl population 
dynamics. 

The assumption of dynamic stability underlies the approach currently used 
to identify optimal harvest regulations in the presence of the various sources of 
uncertainty. Thus, harvest strategies are assessed in the context of a dynamic but 
stable resource system. It is straightforward to incorporate non-stationarity in the 
waterfowl harvest problem simply by including directionality in the amount of 
precipitation over time. Long-term directionality in annual precipitation induces 
systemic changes in the average pond conditions, which in turn induce long-term 
patterns of change in waterfowl populations and harvests. Under these circum-
stances the structures and processes of the resource system change through time, 
even in the absence of harvest. These changes should be taken into account as we 
evaluate forward-looking harvest strategies (Nichols et al. 2010). 
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Palmyra Atoll National Wildlife Refuge,  Pacific Ocean


